Lead Teacher: Dr M S Catalan
Year: 10

Curriculum organisation
Students are taught in mixed groups of $\mathbf{3 0}$ for two hours per week. They are not grouped by ability.

Overview of Topics \& Key Information					How will your child be learning?
Term	Unit(s) of Work	Key Enquiry Questions	Key Content/ Terminology	Skills developed	- Whole class discussion
Autumn Term	Units and Measurement Graphs and Vectors	- When should standard form be used? - How are significant figures used in physics/science? - What are the SI base units? - What are derived units? - What are prefixes? - What is a method for converting units? - How does one measure mass, length, volume and time accurately? - What is Vernier calliper and how is it used? - What is a micrometer and how is it used to make measurements? - What is density? - How is the density of an object/substance determined? - What are the characteristics of a perfect line graph? - What is a good line of best fit? - What is interpolation and extrapolation? - How is the gradient calculated? - What physical quantity does the gradient represent? What is its unit? - What is the relationship between the plotted quantities? - What techniques exist for the interpretation of curved graphs such as inverse relationships? Which quantities are vectors and which scalars? - What is a scaled vector diagram? - How are vectors added? - How are vectors used to solve a range of problems?	- standard form/scientific notation - significant figures - base unit - derived units - metre, second, kelvin, ampere, mole, kilogram, candela - prefixes (Tera, Giga, Mega, liko, centi, milli, micro, nano, pico) - Vernier calliper - micrometer - displacement can - volume - density - line graph - x/horizontal axis - $y / v e r t i c a l ~ a x i s ~$ - gradient - directly proportional - inverse proportionality - interpolation - extrapolation - inverse square law - vectors - scalars - parallelogram method - head-to-tail method - scale diagram	- Numeracy - Convert units - Carry out simple calculations. - Problem-solving - Analysis of more complex situations involving more than one force - Set-up and carry out practical work - Techniques for making accurate measurements of length, mass, time, volume - Make accurate measurements of small lengths using Vernier callipers and micrometers - Collect relevant data in tabular form - Analyse and evaluate experimental results - Plot, interpret and extract physical information from graphs - Draw scaled diagrams of vectors - Analyse and interpret vector diagrams - Independent study	- Pair work - Class demonstrations - Required practical activities - Problemsolving tasks - Watching short video clips - Class and homework worksheets - Research tasks

Equipment needed for lessons

How will learning and progress be assessed?

- Standard school stationery
- Exercise book
- Calculator
- $30-\mathrm{cm}$ ruler
- protractor
- Glue stick
- End of unit tests (subject knowledge focus)
- Formal assessment week (May)
- Peer and self-assessment
- Homework tasks (mostly worksheets with problems and extended answer questions)
- Independent study
- Retrieval practice activities

Extension \& Enrichment opportunities

- Trip: Science Live GCSE
- Extended reading: New Scientist, Scientific American, and an engineering journal Ingenia, available to loan (outside technician's prep room)
- There are a wide range of youtube videos that offer extra support for Higher Tier. Below are some examples:
- FreeScienceLessons https://www.youtube.com/watch?v=ZtQhlwPxE28
- GCSE Physics Online
- https://www.youtube.com/watch?v=oZpvGs2-Xyk
- https://www.youtube.com/watch?v=UyeFNz7sHYg
- Isaac Physics
- https://www.youtube.com/watch? $\mathrm{v}=4 \mathrm{yH}$ ntvCfAVs

What can you do to support your child?

- Provide a quiet space for your child to carry out homework and study for exams
- Provide support with organisation where possible (e.g. help ensure homework is completed on time and that they bring correct equipment to lessons).
- Encourage your child to proactively seek help if they are unsure about any aspect of the work (eg. by attending weekly Physics Drop-In).
- Encourage them to read the appropriate sections of the textbook and attempt the questions in the textbook for practice and consolidation.
- Discuss whether they would benefit from extra study aids such as revision books, revision cards or extra practice questions booklets.
- Teachers follow student passports to ensure that the needs of all students with SEND are met.
- Work is enlarged to the necessary size for visually impaired students.
- Teachers will ensure that classrooms are quiet learning environments where possible and will dim lights to support students with sensory needs.
- Students have the use of laptop if they have a SEND need whereby use of a laptop supports them.
- Hearing impaired students are supported through use a radio aid and teachers ensure that students can lip read at all times during lessons.
- Dyslexic students are encouraged to use coloured overlays when they are required to read long passages.
- Use of dyslexic friendly fonts and coloured backgrounds used in PowerPoints/resources.
- Students with ADHD are given movement breaks, fidget toys and lessons are 'chunked' to aid concentration.
- Students are seated according to their needs, students work with the SENDCo to decide upon this.
- For pupils with visual impairment, enlarged graph paper for plotting graphs during experiments will be available.
- For upper body physical impairment, pupils are allowed to photocopy or take photographs of a classmate's exercise book. A word processor is not always a practical option for labelled diagrams, drawing apparatus or drawing graphs.
- Where possible we amend practical equipment or provide a magnifying glass to view instruments.
- Videos shown with subtitles.
- Some laboratories have height-adjustable benches for wheelchair access

If you have any questions about this Learning Overview, please contact the named Teacher above.

