Subject: Mathematics

Curriculum organisation
Students are taught in mixed groups of 30 for three hours per week. They are not grouped by ability.

Overview of Topics \& Key Information					How will your child be learning?
Term	Unit(s) of Work	Key Enquiry Questions	Key Content/ Terminology	Skills developed	- Whole class discussion - Pair work
Autumn Term	- Sequences - Equations, expressions and formulae - Percentages - Working with 2D shapes - Circles - Pythagoras' Theorem - Multiplicative reasoning - Ratio and proportion	- How does the nth term of a linear sequence relate to the terms of the sequence? - What are the differences between arithmetic, geometric and Fibonacci-type sequences? - How many different ways can you manipulate an expression? - Can you form an equation for this problem and can you solve it? - What are the similarities and differences between an inequality, an equation and an expression? - How can you check your answer to an equation? - Expand ($\mathrm{x}+1$) (x-3) - Rearrange the formula for area of a circle to make r the subject - How can you use multipliers to increase an amount by a percentage? - What do you notice when you increase an amount by 20% then decrease this by 20% ? - How can you link the area and circumference of a circle? - What is Pythagoras' Theorem and when can you use it? - How can you compare different 2D and 3D shapes? - How do you split an amount in a ratio? - Which of these is the best buy?	- Arithmetic sequences, other types of sequences - Working with letter symbols, Expanding Brackets, Factorising Expressions, Rearranging Formulas, Solving Equations including unknowns on both sides and brackets, Index Laws, Expanding Brackets - Working with Percentages, Multipliers and reverse Percentages - Properties of Quadrilaterals, Area \& Perimeter - Circumference and Area of Circle - Pythagoras' Theorem - Percentage Increase and Decrease, Percentage Change - Ratio and proportion, Conversion Graphs, Best Buys - Working with Ratios, Direct Proportion and Inverse Proportion,	- Finding missing terms of sequence, finding the nth term of an arithmetic sequence, recognise the difference between arithmetic, geometric and Fibonacci-type sequences - Simplifying, expanding and factorising expressions, Number machines, Rearranging formulas, Solving equations and inequations including unknown on both sides and brackets, Solving equations with fractions, know \& apply index laws with algebraic expressions, expand double brackets - Calculate percentages of a quantity, percentage increase/decrease, interest, Using multipliers, find the original amount given the amount after a percentage increase/decrease - Properties of Quadrilaterals, Area and perimeter of triangles, parallelograms and trapeziums - Parts of a Circle, Circumference and Area of Circle - Apply Pythagoras' theorem - Share a quantity in a given ratio, Direct Proportion, Conversion graphs - Equivalent ratios, using directly proportional and inversely proportional relationships and finding formulas	- Problem-solving tasks - Independent work - Group work - Investigations

Summer Term	- Real-life graphs - Transformations - Constructions - Trigonometry - Probability	- How can you find the speed on a distance/time graph? - Use a single transformation to describe shape A to shape B - How many different triangles can you draw given? - A 1 m ruler casts a shadow of 0.8 m . What is the height of a tree casting a shadow of 4.2 m ? Which trigonometric ratio does this relate to? - Two coins are thrown, why isn't the probability of getting HH a third?	- Work with Distance-time graphs and other real-life graphs - Translate, Reflect \& Rotate, Enlargement - Construct triangles, perpendicular lines \& angle bisectors, congruent triangles - Similar Triangles and RightAngled Trigonometry - Probability of two-events	- Draw and interpret distance/time graphs, Draw and interpret other reallife graphs eg, showing growth, tides - Given one point or shape on axes; Translate by a vector, reflect in line, rotate about a point, enlarge about a point by scale factor, including fractional - Construct triangles given 3 lengths or 2 lengths and one angle, construct perpendicular bisector or perpendicular through a point, construct angle bisector - Use scale factor to find missing sides in similar triangles; use sine, cosine and tangent ratios to find missing sides and angles in right-angled triangles - Listing outcomes, using Venn diagrams \& Two-way tables to find probabilities

- Standard school stationery (Pencil, Blue/Black Pen, Green Pen, Whiteboard Pen, Rubber, Sharpener, Ruler)
- Exercise book
- Scientific Calculator
- Pair of Compasses
- Protractor
- End of half term tests
- Formal assessment week
- Peer and self-assessment
- Homework tasks
- Retrieval practice activities

Extension \& Enrichment opportunities

- Junior mathematics challenge
- Team mathematics competition
- KS3 Puzzle and problem-solving lunchtime club

What can you do to support your child?

- Several websites are very useful that include videos, questions and walked through examples, these are: mymaths.co.uk, corbettmaths.com and drfrostmaths.com
- Encourage regular revision

Inclusion

- Teachers follow student passports to ensure that the needs of all students with SEND are met
- Work is enlarged to the necessary size for visually impaired students.
- Teachers will ensure that classrooms are quiet learning environments where possible and will dim lights to support students with sensory needs.
- Students have the use of laptop if they have a SEND need whereby use of a laptop supports them.
- Hearing impaired students are supported through use a radio aid and teachers ensure that students can lip read at all times during lessons.
- Dyslexic students are encouraged to use coloured overlays when they are required to read long passages.
- Use of dyslexic friendly fonts and coloured backgrounds used in PowerPoints/resources.
- Students with ADHD are given movement breaks, fidget toys and lessons are 'chunked' to aid concentration.
- Students are seated according to their needs, students work with the SENDCo to decide upon this.

Inclusion within Y8 Maths

- Equipment is adapted wherever necessary to accommodate the needs of students with SEND
- Where necessary, pupils are given frequent one to one tutorials to revisit previous topics and methods taught to support their understanding
- Pupils are provided with online resources to help with learning outside of the classroom and homework, such as videos and worked examples
- Students have access to spare mathematical equipment to help with organisation

If you have any questions about this Learning Overview, please contact the named Teacher above.

