Curriculum organisation
Students are taught for three lessons a week in three groups of 30 . There is a set A and two parallel ability set Bs.

Overview of Topics \& Key Information					How will your child be learning?
Term	Unit(s) of Work	Key Enquiry Questions	Key Content/ Terminology	Skills developed	- Whole class discussion - Pair work
Autumn Term	- Exponential functions - Graphs - Trigonometric graphs and equations - Non-linear simultaneous equations - Functions - Graph transformations - Numerical methods - Proof - Interpreting graphs - Basic number* - Basic algebra* - Basic geometry* - Algebraic fractions* - Manipulation and proof* - Linear and quadratic equations* - Introductory coordinate geometry*	- What are similarities and differences between exponential growth and decay graphs? - What are the key features of a cubic, exponential and reciprocal graphs? - How many solutions does a trigonometric equation have? - How are solutions to sine equations related? - How do you find the inverse function? - What is an inverse function? - What is the new function given a transformation? - How do you know what transformation it is referring to? - What notation is used for even and odd numbers, consecutive numbers etc? - How do you find the gradient of a curve? - What is the difference between the instantaneous rate and average rate? - What does the area under a speed time represent?	- Exponential functions, growth, decay, exponential graphs - Cubic graphs, reciprocal graphs - Sine, cosine, tangent, period - Non-linear equations, quadratic equations, simultaneous equations, approximate roots graphically - Functions, inverse, composite - Translation, reflection - Approximate solutions, iteration, sign-change method, - Algebraic proof, arguments - Real world graphs, average rate, instantaneous rate, estimate gradients and area under graphs - Calculus, differentiation, $\frac{d y}{d x}$, rates of change* - Composite functions, inverse functions, domain and range*	- Express exponential growth and decay as formula, solve growth and decay problems, plot, sketch and recognise exponential graphs - Plot, sketch and recognise reciprocal and cubic graphs - Solve trigonometric equations - Recognise and sketch the graphs of $y=\sin x, y=\cos x$ and $y=\tan x$. - Solve simultaneous equations where one is a quadratic or it results in a quadratic; use graphs to approximate solutions - Find inverse and composite functions - Identify and sketch translations and reflections of graphs - Approximate solutions to equations using iteration - Use algebra to construct proofs and arguments - Estimate gradients using tangents, estimate areas under graphs; calculate average and instantaneous rates of change; interpret in context such as velocity-time graphs and distance-time graphs - Differentiate algebraic expressions with integer and fractional indices; use differentiation to find gradient of curves*	- Problem-solving tasks - Independent work - Group work - Investigations

	- Introductory calculus* - Functions* *further mathematics only	- How can you find the gradient of a curve algebraically?* - What is differentiation?* - How do you find the range of a function?*		- Find inverse and composite functions; work out ranges of functions; express domains and ranges in different forms*	
Spring Term	- Revision and exam practice - Sketching functions and inequalities* - Surds* - Index laws* - Equations of straight lines and circles* - Simultaneous equations* - Matrix multiplication* - Trigonometry and Pythagoras* - Calculus applications* - Sequences* - Factor theorem* - Matrix transformations* - Further trigonometry* *further mathematics only	- What information helps you sketch a graph?* - How do you rationalise a surd?* - When can you apply the rules of indices?* - Why does a power $1 / 2$ mean square root?* - How does the equation of a circle change if you change the centre point?* - How would you determine if a line is a tangent to a circle?* - Can you apply the same methods of solving simultaneous equations two unknowns with three unknowns?* - What is a matrix?* - What does multiply matrices mean?* - Can all matrices be multiplied?* - How do you find the angle between two planes?* - What is an increasing or decreasing function?* - How can differentiation be used to solve problems in context?* - What happens to a sequence as n tends to infinity?*	- Sketching graphs, multiple domains, turning points, inequalities* - Rationalising denominators* - Fractional indices, negative indices* - Gradients, parallel, perpendicular, equations of circles, equations of tangents* - Solving simultaneous equations, elimination, substitution, equations with three unknowns* - Matrix, scalar, order, associative, commutative, identity matrices* - Angles between planes or lines, Pythagorean triples* - Stationary points, increasing and decreasing functions, equations of normal and tangents, maximum and minimum points* - Limiting values, quadratic and linear sequences* - Roots, polynomials, factors* - Unit square, matrix transformation* - Trigonometric identities, trigonometric equations*	- Sketch graphs with up to three domains; solve linear inequalities; solve quadratic inequalities* - Manipulate surds, rationalise the denominator* - Solve equations with expressions involving negative and fractional indices; simplify expressions with negative and fractional indices* - Work out gradients and equations of lines, find equations of circles with centre (a, b); find equations of tangents* - Solve three linear simultaneous equations* - Multiply 2 x 2 or 2 x 1 matrices* - Calculate angles between planes, apply trigonometry and Pythagoras in 3D* - Find stationary points of curves, determine the nature of stationary points; find equations of normal and tangents; apply calculus to problems in context* - Work out limiting values of sequences, find the nth term for quadratic sequences* - Find roots of polynomials, factorise polynomials, solve polynomial equations* - Apply matrix transformations and know the corresponding matrix representations* - Sketch and use trigonometric graphs, use trigonometric	

		- How can you factorise cubic expressions?* - What is the matrix that represents a reflection on the x-axis?* - How are trigonometry and Pythagoras directly related?* - How many solutions should a trigonometric equation have?* - Why can trigonometric equations have more than one solution? - How do you find other solutions to trigonometric equations?*	identities, solve trigonometric equations*		
Summer Term • Revision and exam practice					

Equipment needed for lessons

- Standard school stationery (Pencil, Blue/Black Pen, Green Pen, Rubber, Sharpener, Ruler, Whiteboard pen)
- Exercise book
- Scientific Calculator
- Pair of Compasses
- Protractor

How will learning and progress be assessed?

- End of half term tests
- Formal assessment week
- Peer and self-assessment
- Homework tasks
- Retrieval practice activities

Extension \& Enrichment opportunities

What can you do to support your child?

- Intermediate mathematics challenge
- Further mathematics Level 2 qualification
- KS4 Puzzle and problem-solving lunchtime club
- Puzzle of the week
- House mathematics competition
- Several websites are very useful that include videos, questions and walked through examples, these are: mymaths.co.uk, corbettmaths.com, mathsgenie.co.uk and drfrostmaths.com
- Encourage regular revision
- Teachers follow student passports to ensure that the needs of all students with SEND are met.
- Work is enlarged to the necessary size for visually impaired students.
- Teachers will ensure that classrooms are quiet learning environments where possible and will dim lights to support students with sensory needs.
- Students have the use of laptop if they have a SEND need whereby use of a laptop supports them.
- Hearing impaired students are supported through use a radio aid and teachers ensure that students can lip read at all times during lessons.
- Dyslexic students are encouraged to use coloured overlays when they are required to read long passages.
- Use of dyslexic friendly fonts and coloured backgrounds used in PowerPoints/resources.
- Students with ADHD are given movement breaks, fidget toys and lessons are 'chunked' to aid concentration.
- Students are seated according to their needs, students work with the SENDCo to decide upon this.

Inclusion within Y11 Maths

- Equipment is adapted wherever necessary to accommodate the needs of students with SEND
- Where necessary, pupils are given frequent one to one tutorials to revisit previous topics and methods taught to support their understanding
- Pupils are provided with online resources to help with learning outside of the classroom and homework, such as videos and worked examples
- Students have access to spare mathematical equipment to help with organisation

